


Structural-colored silk based on Ti–Si bilayer
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In this Letter, Ti–Si bilayer was deposited on white silk to achieve coloration of the silk. By controlling the thickness of the Ti
layer and Si layer, the saturation and the hue of the color on the silk could be preciously modulated, respectively. The
structural colors on the silk could cover the major colors in the International Commission on Illumination 1931 chromaticity
diagram, and it exhibits good durability, which is demonstrated by rubbing and stretching treatments. The developed textile
coloration method may provide an eco-friendly technology in the silk dyeing industry.
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1. Introduction

Textile dyeing plays an indispensable role in our daily life,
enriching people’s choices of the textile and satisfying our desire
for aesthetics. In general, traditional textile dyeing is mainly
based on chemical pigments, which may lead to environmental
pollution and health concerns[1,2]. Fortunately, structural colors
found in the natural world inspire people to utilize nanostruc-
tures to achieve coloration that could avoid the above-
mentioned problems. Structural colors[3–11] originate from the
interaction of light with photonic structures whose feature sizes
are comparable to visible wavelengths[12,13]. There are many
kinds of structural colors in the bio-world including the
structural-color patterns in the transparent wings of small
Hymenoptera[14], the brilliant metallic green color based on
multilayers in the jeweled beetle[15], the colorful eye patterns
composed of two-dimensional (2D) photonic crystals in the pea-
cock[16], and so on[17–20]. Inspired by these natural structures, we
can also fabricate some similar structures with eco-friendly and
non-toxic materials to replace dye. Over the last few decades, a
series of explorations focusing on the bio-inspired fabrication of
structural colors have been implemented: seashell-inspired 2D
photonics nanostructures could be employed for solar energy
conversion applications[21]; chameleon-inspired photonic film
could be employed for visual senses[22]; bird-feather-inspired
amorphous structures could be employed for structural color
ink[23]. In this work, structural color based on the thin-film

interference[24,25] effect was applied to white silk fabrics. Ti
was chosen as the adsorbed and adhesion layers, and we could
adjust the saturation of the color by controlling the thickness of
the Ti layer. The Si layer was deposited on the Ti layer, and the
hue could be regulated by changing the thickness of the Si layer.
Compared with traditional textile dyeing, our method could be
non-toxic and eco-friendly, and the color could be tuned
precisely.
In order to construct color coatings on silk, we deposited Ti–

Si bilayers on white silk using e-beam evaporation. Silk, com-
posed of protein, is an eco-friendly biological material[26,27] with
many remarkable properties such as breathability, hygroscopic-
ity[28,29], and elegant shine[30]. Besides, it is abundantly available
on the earth, so silk has been popular in people’s daily life for
thousands of years. Natural silk is white and usually dyed by
chemical pigments in the past to bring out the individual and
cultural identities. In our work, we select white silk as the sub-
strate, and the coloration is established on a nanostructure of the
Ti–Si bilayer. Our structural color system consists of Ti and Si.
Ti is beneficial to increase the adhesion between silk fabrics and
the Si layer. What is more, Ti could also play the role of an
absorption layer because of its high absorption rate in the visible
frequency, which is important to improve the color saturation.
The Si layer is mainly used to modulate the color. The large
refractive index of Si guarantees the capability of our structure
to obtain an obvious variation in hue by slightly changing the
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thickness of the Si layer, and it is essential for cost-effective
fabrication[31–33].

2. Results and Discussions

Figure 1(a) shows the illustration of structural-colored silk. The
white line represents the white silk, while the gray line adjacent
to the white line represents silk coated with a Ti layer, and the
dark red line represents silk coated with a Ti–Si bilayer structure.
Figure 1(b) shows the scanning electron microscope image of
the Ti–Si bilayer on a single fiber. The sample reveals well-
defined layers. The black part in the upper right area is the silk.
The central area with the cyan mask is the Ti layer, and the area
with purple mask is the Si layer. Figure 1(c) shows the photo-
graph of three typical macro samples by introducing the Ti–Si
bilayer on white silk. We obtain cyan, olive, and brick red struc-
tural-colored silk with the Si layer equal to 54 nm, 87 nm, and
120 nm, respectively, and the Ti layer is fixed at 100 nm. Both the
single Si layer and single Ti layer coated on the white silk could
not get a pretty color, as shown in Figs. 1(d) and 1(e).

Figure 2(a) shows the photograph of structural-colored silk by
changing the thickness of the Ti layer and the thickness of the Si
layer. Vertically, saturation enhancement occurs when increas-
ing the thickness of the Ti layer. Horizontally, the hues range
from indigo to purple red by increasing the thickness of the
Si layer. Figure 2(b) shows the measured reflectance spectra
of samples in Fig. 2(a) with the thickness of the Si layer varied
from 54 nm to 120 nm, and the thickness of the Ti layer fixed at
100 nm, revealing a distinct redshift. Figure 2(c) shows the mea-
sured reflectance spectra of the samples in the third column of
Fig. 2(a) with the thickness of the Si layer fixed at 54 nm. With
the thickness of the Ti layer increasing, the reflectance at the vis-
ible frequency decreases gradually, resulting in the enhancement
of saturation. As shown in Fig. 2(d), the measured reflectance
spectrum of ten samples in the first row of Fig. 2(a) is converted
into the International Commission on Illumination (CIE) 1931
chromaticity values. The ten points cover the main colors in the
chromaticity diagram, indicating that the structural-colored silk
is universal in color representation. We do not observe color
changes with the naked eye at oblique angles (< 50°), and this
is due to the high refractive index of the Si layer. We measured

Fig. 1. (a) Illustration of the proposed bilayer for realization of structural color on white silk. The white line represents silk, while the gray line represents silk
coated by a Ti layer, and the dark red line represents silk coated with a Ti–Si bilayer structure. (b) SEM image of the Ti–Si bilayer on a single fiber. The Ti layer is
marked by cyan, and the Si layer is marked by purple. (c) Photograph of cyan, olive, and brick red coatings on white silk. The thickness of the Si layer is 54 nm,
87 nm, and 120 nm with the Ti layer fixed at 100 nm. (d) Photograph of silk fabric with a Ti layer thickness of 100 nm. (e) Photograph of 105 nm Si layer on white silk.
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the refractive index of the deposited Si layer by using an ellips-
ometer, showing that the refractive index of Si is relatively high,
around 3.46 at 580 nm. As shown in Figs. 2(e)–2(g), when
changing the incident angle from 5 to 55 deg, the wavelength
of the reflection peak almost does not shift. This indicates that
the colors modulated by the Ti–Si bilayer on the white silk are
nearly angle-independent in the measured angle range.
Figure 3 shows two photographs of Beijing Opera Facial

Makeup on white silk. We can observe the vivid facial features
of the Beijing Opera Facial Makeup by changing the thicknesses

Fig. 2. (a) Color palette of the structural colors as a function of the thicknesses of the Ti layer and Si layer. (b) Measured reflectance spectra of four bilayers with
the Si layer thickness varied from 54 nm to 120 nm. The thickness of the Ti layer is fixed at 100 nm. For comparison, the blue, orange, and green spectra are offset
up by 5%, 10%, and 15%, respectively. (c) Measured reflectance spectra of four bilayers with the Ti layer thickness varied from 25 nm to 100 nm. The thickness of the
Si layer is fixed at 54 nm. (d) Corresponding colors of samples in the first row of (a) in the CIE 1931 chromaticity diagram. The thickness of the Si layer increases
along the direction of the arrow. (e)–(g) Measured angle-resolved specular reflectance spectra of three samples. The thickness of the Si layer in (e), (f), and (g) is
64 nm, 80 nm, and 87 nm, respectively. The thickness of the Ti layer is fixed at 100 nm.

Fig. 3. Structural-colored Beijing Opera Facial Makeup patterns on white silk.
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of the Ti layer and the Si layer. In order to avoid the shadow of
the camera, the photograph is taken at about 20°. In fact, there is
nearly no difference between the color of the photograph and the
color actually seen at the normal angle, revealing a similar color-
ing effect to traditional dyeing.
Figure 4(a) shows the photograph of cyan-colored silk before

and after rubbing and stretching treatments. The rubbing and
stretching treatments are shown in Fig. 4(b). Figure 4(c) shows
the corresponding reflectance spectra. Although there is a small
change at the peak position before and after rubbing treatments
for 5 or 15 times, color fading is not observed in Fig. 4(a). For the
sample with only a 105 nm Si layer, there is a decrease of more
than 10% of the reflectance after rubbing and stretching treat-
ments, as shown in Fig. 4(d). While for the sample with the
Ti–Si bilayer (rubbing and stretching treatments for 5 or 15
times), the change of reflectance is about 2%, indicating that
the Ti layer can act as an adhesion layer. The structural-colored
silk exhibits good durability, demonstrating potential practical
applications of the structural-colored silk.

3. Conclusion

In summary, we propose and demonstrate a non-toxic, eco-
friendly, and cost-effective structural-colored silk based on
the thin-film interference effect by constructing a Ti–Si bilayer

on white silk. Enabled by the absorption of Ti in the visible fre-
quency, we can obtain high-saturation colors on the silk. By
changing the thickness of the Si layer, we can achieve the major
colors in the CIE 1931 chromaticity diagram. Meanwhile, the
structural color is insensitive to the change of observation angle
(< 50°). In addition, rubbing and stretching treatments show
that these vivid structural colors coated on silk possess good
durability, indicating a potential method for developing green
technologies in the silk dyeing industry.
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